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sequences 

Michael Hornquistt and Magnus Johansson$ 
Department of Physics and Measurement Technology, Lidz6ping University. S-581 83 
LinkGping, Sweden 
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Abstract. We derive substitution rules for a class of binary quasiperiodic sequences generated 
by circle maps whose roradon numbers we obtained from the precious means. The n a m e  of 
the elemOD spectra for the corresponding diatomic chains is studied in the nearest-neighbour 
on-site tight-binding approximation using the lransfer-matrix technique. By studying propenies 
of the trace maps, we find that the specmun is purely singular continuous in most of the studied 
cases. 

1. Iutroductiou 

During the last decade, much theoretical and experimental study has been devoted to the 
subject of one-dimensional deterministic aperiodic systems. Concerning the theoretical 
investigation of the electronic properties of such systems, the nearest-neighbour on-site 
tight-binding model or, equivalently, the discrete Schrodinger equation, described in natural 
units by 

V"C. + i (Cn-1 + &+l) = Ec, (1) 

has received the most attention. It has been realized that these systems exhibit a large variety 
in their spectral properties. depending on the explicit choice of the on-site potential. If the 
on-site potential V, takes values from a continuous set, as in models for incommensurate 
crystals, the nature of the spectrum depends generically on the magnitude of the amplitude of 
the on-site potential compared to the hopping integral i. The spectrum is usually absolutely 
continuous when the potential amplitude is small, a pure point when the amplitude is large 
and has a mixed character with mobility edges separating regions with absolutely continuous 
and point character for intermediate amplitudes [l]. A notable exception from this generic 
behaviour is the famous Aubry-Andrk model [2], where the on-site potential V, is obtained 
from 

V, = Vcos(2xn{ +9). (2) 

Due to duality, the character of the spectrum for this model will change from purely 
absolutely continuous to pure point at the critical value V = 21t[, where the specmm 
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is purely singular continuous [3,4]. Moreover, if the incommensurability 5 is chosen as a 
Liouville number [3], the spectrum of this model will keep its singular continuous nature 
even for supercritical values of the potential strength. 

If singular continuous energy spectra are somewhat exceptional in the study of 
incommensurate crystals, they appear much more frequently in models for one-dimensional 
quasicrystals or aperiodic superlatrices, where the on-site potential is restricted to take values 
f” a finite set of numbers. Examples of models where the spectrum has been rigorously 
proved to be singular continuous regardless of the potential strength are those obtained by 
choosing the on-site potential according to Fibonacci [5], Thua-Morse [6,7] and period- 
doubling [7] sequences. These results were obtained using the tracemap technique (see 
section 3) which is applicable to all sequences that can be generated by substitution rules. 

In order to obtain a general description of the spectral properties of substitutionally 
generated systems, an important result was obtained recently by Bovier and Ghez [8,9]. 
In terms of some properties of the substitution rule and its corresponding trace map, they 
give sufficient conditions for the spectrum to be purely singular and singular continuous, 
respectively, (These results will be described in detail in section 3.) In this context, one 
may note that, although most of the sequences treated as examples in [SI fulfil at least 
the conditions to have a spectrum of zero Lebesgue measure, there is an exception in the 
Rudin-Shapiro sequence. For this sequence, numerical investigations have indicated that 
the spectral properties depend on the potential strength [IO, 111, and that for most values of 
the on-site amplitude the spechum has a pure point character {I l l .  One should thus bear 
in mind that the class of sequences giving singular continuous spectra probably does not 
include all sequences that can be generated by substitutions, and that further investigation 
of the sequences which belong to this class is important. 

One sequence shown in [8] to belong to this class is the one usually denoted in the 
literature as the ‘circle sequence’ IS, 10, 12,131. It is a binary quasiperiodic sequence 
obtained from a circle map by dividing the circle into two equal parts representing the 
two values in the sequence and using a rotation number related to the golden mean (see 
section 2). It could also be viewed as the sequence obtained by taking the sign of the 
potential in the Aubry-Andr6 model (2). The rigorous treatment of the spectral properties 
for this system was possible due to the work of Aubry et al [14] who showed that the circle 
sequence could also be generated by a substitution rule using a process that will be described 
in section 2. However, this technique is by no means restricted to rotation numbers related 
to the golden mean, and one may ask the question whether other rotation numbers will also 
result in sequences giving singular continuous spectra. As a first step towards the answer 
to this question, we will, in this paper, treat the case with rotation numbers obtained from 
arbitrary precious means as defined by (15) below. To make the paper as self-contained as 
possible, we will state the main results from [I41 and [SI in sections 2 and 3, respectively. 
As an illustrative example, we study here, in particular, a sequence related to the silver 
mean. We derive its substitution rule in section 2, its corresponding trace map in section 3 
and show that it fulfils the conditions to give a singular continuous energy spectrum. The 
case of a general precious mean is then treated in section 4 and concluding remarks are 
made in section 5. 

M Homquist and M Johansson 

2. The sequences 

One standard way of generating binary quasiperiodic sequences is by using a circle map 
(see, e.g., 1141). For completeness, we give here a short recapitulation of the method. 
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Consider a circle with unit circumference. Let A be the fraction of one of the two elements 
in the sequence and let < be an irrational number. Divide the circumference of the circle 
into two parts, of length A and 1 -A,  respectively, and associate the value +V to one part 
and -V to the other. By walking around the circle in steps of length <. and for each step 
picking the value of either +V or -V ,  one obtains a binary quasiperiodic sequence with 
the two incommensurable frequencies < and 1. Analytically the sequence is given as 

where 

V, = V(- l  + 2[Int(n<) - Int(n< - A)]] (4) 

Here Int(x) denotes the integer part of x ,  defined as lnt(x) = max{j E Z : j < x } .  All 
sequences which can be constructed in this way we will collectively call circle sequences. 
Note that this is a generalization compared to what is usually denoted as 'the circle sequence' 
[S,  10,12,13], which corresponds to A = and ( = r-', where t is the golden mean 

To facilitate analytical investigations of physical properties of systems generated by 
these sequences, Aubry eta1 [14] have proposed a way to obtain a subsrimion rule which 
generates a sequence equivalent to the one obtained from the circle map. We will now 
briefly discuss some formalism concerning substitution rules. The notation will mainly 
follow the one used in [SI. 

Let A be a finite set, called an alphabet, the elements of which we call letters. Any 
ordered combination of elements in A, where each element can occur an arbitrary number 
of times, is called a word. The set of all words is denoted by A", which makes it possible 
to define what we mean by a substitution 8 .  

(Js+ 1)/2. 

Definition 1. Let 6 be an operator A -+ A*. We then call 8 a substitution rule for the 
alphabet A. 

Since we want the substitution rule to apply to elements in A' as well as in A, we extend 
it to be an operator A' -+ A' by the rule 

P ( 0 )  = S ( ~ O ) h ( ~ 1 ) " ' 8 ( ~ . )  (5)  

where w = a0al . . .a, E A' and eo, a,,  , . . ,aa E A. We will also use the notation tk to 
denote a k times repeated application of the substitution rule. If a substitution rule is to be 
useful in generating an infinite sequence of the form hw(a), where a E A, it has to possess 
at least one fixpoint. 

Defrnifion 2. Let be a substitution rule and w a one-sided infinite word w E A'. If 

= (6) 

we call w a fixpoint to the substitution rule 8 ,  
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We will use both right and left fixpoints, where the former corresponds to sequences 
such as (V,)? and the latter to (V.):L. There is an easily verifiable criterion [IS] for the 
existence of at least one right fixpoint to a substitution (namely e"(d0))). 

(i) There exists a letter a@), do) E d, such that the word t(do)) begins with a('). 
(ii) The length of the words gX(a(')) goes to infinity as k + 03. 

In the same way, we can guarantee the existence of a left fixpoint b replacing the first 

The idea in [14] of obtaining a substitution rule for the binary sequence defined by 
(?)-and (4) relies on the introduction of a set of elementary transformations, denoted by 
S, f i ,  f2 and f3, resulting in an exact renomlization transform acting on the parameters 
(A,  f). Each elementary transformation is associated with an elementary substitution rule, 
which we denote by gs, .$n, .$a and g ~ , ,  respectively. Although the final sequence should 
be binary, we have to use an alphabet with three elements, referred to as A = [ A ,  E ,  C). 
Before we introduce these transformations, we have to review some number theoretical 
results. They will be stated here without proofs, which can be found in [14,16]. We choose 
to rewrite 5 as a continued fraction expansion, i.e. as 

condition above with 'there exists a letter ay) such that the word g(q (8 ) ends with a?)'. 

1 
1 

01 + 7 
a2 i- - 

c =  

... 

(7) 

where all a. are non-negative integers. It is possible to show [16] that the sequence of best 
rational approximants to < is ( r . / sn)zo ,  where 

and 

Let 6, be a measure of how close every rational approximation (rn/sn)  is to {, i.e. set 

6, = s.c - r.. (10) 

Now it is possible to show [I41 that any A can be expanded in 8.. i.e. we can always find 
non-negative integer coefficients pn such that 

m 

A =  PA (11) 
?I=' 

There is also a unique way of determining the coefficients p .  to obtain the best 
approximation of A with a finite number of terms. Namely 

f set Ro = A 
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Once the pn are obtained, it is straightforward to find the transformation which gives the 
substitution rule. First, define the elementary transformations .?, 2. f2 and ?3 as: 

j.: a{ = a2 + 1 

U; = a.+l n > 2 

PA = PI + 1 

P; = P.+I n 2 1 

M A )  = C M E )  = B M C )  = A 

T;: a{ = U ,  - 1 

aA=a, n > 2  

PA = PO - 1 

P ; = P .  n > l  

tr , (A)  = A B  tfi(B) = B Cr,(C) = C. 

The A’s, B’s and C‘s are the elements of the alphabet A upon which the substitution acts, 
the pn are from the algorithm in (12) and the a, from the continued fraction expansion in 
(7). Then, acting on the a. and p.. let 

(i) 2 apply when al = 1; 
(ii) f, apply when al > 1 and po = 1; 
(iii) fz apply when al > 1, po = 2 and PI > 0; and 
(iv) ?3 apply when al 

Finally, let a, =a; and p,, = p; for all n and repeat the procedure. 
If the a, and pn are periodic (at least for n > N ,  where N is some fixed integer) 

we will also, after a while, obtain periodicity in the string of ,? and z, and the total 
transformation is obtained as a product of the elementary transformations in the period. 
This total transformation will be an exact renormalization operation which the associated 

1 and either po > 2 or p ,  = 0. 
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substitution rule 5 is defined as the composition of the corresponding elementary substitution 
rules. In general, there will be a string of elementary transformations, a ‘transient’, preceding 
the period and in such a case we must apply to the word Cm(d0)) the substitution rule 
corresponding to the transient in order to obtain the original sequence. Finally, introduce 
the operator U : A 3 R as 

M Horquist and M Johansson 

v ( A )  = t V  

v ( B )  -V if A c 5 
v(C) = -v 

or 

v ( A )  = t V 
v ( B )  = + V  

v(C) -v 
if A > 5 (14) 

and set V,, = U&), where an E A is the nth letter in the sequence $m(&‘)). With this we 
are back to the sequence in (3). 

Generalizing the ordinary ‘circle sequence’, we now turn our attention to the case when 
5 is equal to the inverse of an arbitrary precious mean, i.e. when all non-negative integers 
a, in (7) are equal. a,, = a, n = L2,. . . . Keeping the value A = $, the pair (A ,  () can be 
expressed as 

The case a = 1 is just the image by S of the case ( = r-2 discussed above. The sequences 
and (s,)zo from (8) and (9) are now connected as r. = &-I, which turns the r, 

into ‘generalized Fibonacci numbers of order a ’ .  Explicitly this means 

r, = arn-l + r,-2 I r o = O  r l = l  

which is possible to write in closed form as 

5-” - (-5)” 
5 - ’ + 5  ’ 

r, = 

We will also need an expression for the 8,. which can be obtained from (IO) and (17) as 

(18) . 

To illustrate the main ideas, we will now study the particular case a = 2. In section 4 we 
will return to the more general case of an arbitrary a. 

n n t l  8, = rntl< - r. = (-1) ( 

With a = 2 in (15), we obtain 
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From the algorithm in (12), we obtain (p . )zo  = (2,2,1,2,1.2, 1,2,. . .). This sequence is 
periodic and so is the sequence of a,. This makes it possible to associate a finite substitution 
rule with the sequence generated by the circle map. Before we arrive at ,"e periodicity in 
the string, we have a transient. Here this transient turns out to be the Tz-transformation, 
applied once. A calculation gives the period for the transformation as 

where the notation f has been used to denote the whole transformation. The substitution 
rule associated with this transformation is now obtained as ( = (s(&&$&,, acting on 
the letters A, B and C, respectively. Explicitly, 

$(A) = ACBACBB 
((B) = ACBBCBB 
<(C) = CBB. 

To arrive at the sequence associated with the values of the parameters (A,  <) given in (19), 
we start with a seed do) upon which we let the substitution ( act an infinite number of 
times. Subsequently, we apply to the generated sequence the elementary substitution that 
preceded the period, i.e. we apply the transient ( E ,  which means that we turn every A in 
the final sequence into AB and every B into AC. In the case when we do not use the 
transient, we obtain a sequence, which we will call the silver circle sequence, corresponding 
to parameters (A'+ <') with values 

This can be seen from the formulae for the transient, i.e. from the elementary transformation 
'f~ above. The last step is to obtain from the letters A, B, C the original sequence of f V .  
This is achieved by applying the operator U in the form of (14), if we use the transient 
to obtain the sequence described by (19), and otherwise in the form of (13) to obtain the 
sequence described by (22). 

For further use we introduce the concept of primitive substitution [15]. 

Definition 3. 
k such that for any two letters a. 0 E A, the word fk(a) contains the letter p .  

A substitution $ on an alphabet A is called primitive if there exists an integer 

We see immediately that our substitution rule (21) is primitive and that k = 2 in the 
definition is sufficient. We also see from the criterion below definition 2 that it has one left 
and two right fixpoints which are obtained for ay' = B, a@) = A and do) = C. Note, 
however, that these two values of do) result in the same sequence, except for the first two 
elements corresponding to n = 0 and n = 1. respectively. 

3. Electron spectrum 

Consider the sequence (V,),", defined in (3) and (4) and extend it to negative n as described 
in [9]. This can always be achieved in the following by choosing an appropriate generator 
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a,@), of a left fixpoint and then concatenate the two fixpoints to an infinite sequence 
t " ( ~ , ( ~ ) ) g ~ ( a ( * ) ) ,  observing that the word a/')a(O) is contained in t"(a(o)) as requested 
in [9 ] ,  With this extension, equation (4) holds also for negative n if we choose aio) properly. 
This is indeed the case for all sequences that we consider. 

Let this sequence represent a onedimensional quasiperiodic structure of two different 
types of atoms placed equidistantly on an abscissa. Let V, also denote the potential on site 
n and stick to the form of the Schrodinger equation given in (1). If we define the transfer 
matrix T,, as 

Tn = ( j 

we can rewrite ( I )  as 

This makes it natural to consider the transfer matrices as operators T : A + SL(2, R) via 

where a E A and U is defined by (13) or (14). We can also let T operate on elements in 
A*, i.e. words, according to 

T(o) = T(an)T(an- , ) .  . . T(ao) (26) 

where o = aoal". rr, E A* and EO. a,, ...,a;, E A. Note that the order of matrix 
multiplication is opposite to the order of the letters in the word. This can be seen from 
(24). Now we can combine the map T with the substitution rule p via 

("[T(o)] T"(w) T[t"(w)]  o E A" (27) 

where 5" as before is understood to be the substitution rule applied n times. This makes it 
possible for us to write T"(a)  expressed as 

where X is the set having the letters from t (a)  as elements. The two theorems from [SI 
that we use below, however, do not deal with the transfer matrices themselves, but with 
their traces. Therefore, we have to ineoduce the concept of trace map, and, also from [SI, 
the concepts of reduced trace map and semi-primitive substitution. 

Definition 4. = Tr[T"(o)]. Extending the action 
of e in the same way as in (27), we write x n ( o )  = g [ x . - ~ ( o ) ] .  With a trace map we mean 
a mapping Rk + R' such that x n ( o )  is a function of xn-l(o), x, E R', k is the cardinality 
of some set B c A" and o E 8. 

Let o E A" and use the notation 



' x, = Tr[T"(A)] 

~n = Tr[T"(B)I 

(30) 
zn = Tr[T"(C)I 
r, = Tr[T"(ACB)I = Tr[T"(B)T"(C)T"(A)I 
U. = Tr[T"(BC)] 
. w, = Tr[T"(AC)]. 

q 

' x,+t = ( w n  - w n k n  - Y" 
ynti = ( Y A  - z&wn - 4- x. 

Z"+l = Y " h  - 2" 

r , t ~  = [(Y,u, - z & w n  - wd -x . l [ rdx~,  - zn)(ynrn - 

untI = (Y.u. - Z.)[(Y,V, - z d w n  - w,) -.GI - wn + wn 
. w,+t = [(Y,u, - z&wn - w d  - &drn - (YA - zdy, + U,. 

- rnxn 
- y n ( a v n  - zd + unl - Ynrn + wn 
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mind, it is clear from (29) that every bace map has a unique reduced trace map with all 
coefficients equal to unity. In the case of the silver circle sequence, the reduced trace-map 
becomes 

M H6rquist and M J o h n s o n  

2 
xntl  = ynrn I Y"+I = y.2rnu, 

Omitting all subscripts in the reduced trace map and changing the names of the elements in 
the set B, such as B = ( x .  y, z, r. U, w ] ,  we can consider (32) as a mapping + : B -+ B*. 
This mapping + is not uniquely defined because the order between the elements is not 
specified. The ambiguity will not, however, give rise to any problems. To characterize 
an important property of the mapping q5, we introduce the concept of semi-primitive 
substitution [SI. 

Definition 5. A substitution q5 on an alphabet B is called semi-primitive if 
(i) there exists a subset C c B such that q5 maps C into C' (where C" is defined from C 

in the same way as A" from A above) and the restriction of q5 to C is a primitive substitution 
(cf definition 3); and 

(ii) there exists a positive integer m such that for each letter +4 E B, +"(+4) contains at 
least one letter from C. 

To see that + really is semi-primitive, we choose the set C as C = {y, r, U). Now it is clear 
that C c B and that + maps C into C' (cf (32)). From definition 3, it is obvious that the 
restriction of q5 to C is a primitive substitution with k = 1. Finally, we note that whatever 
letter in D we start with, in the next step when the substitution has been applied once, we 
will always have at least fwo letters from C. Hence, the substitution q5 associated with our 
reduced trace map is semi-primitive. 

From [SI we now obtain the following theorem. 

Theorem 1. Let 6 be a non-constant primitive substitution with no constant iterate defined 
on a finite alphabet A. Let U be a non-constant map A + W and H the Schrodinger operator 
implicitly defined by (1). Suppose there exists a trace map with an associated substitution 
4, defined on an alphabet 13 as described above, which is semi-primitive. Assume further 
that there exists k c CO and a@) E A such that ~ x ( o r ( o ) )  contains the word pj3 for some 
+4 E B. Then the spectrum of H is singular. 

Proof. See [SI. 

is primitive and that q5 is semi-primitive. 
Further, we have that with do) = A E A, C(A) = ACBACBB.  Since B E B, the theorem 
applies and the spectrum is singular, i.e. supported on a set of zero Lebesgue measure. 
In [SI we also find the following theorem. 

Theorem 2. Suppose the hypotheses of theorem I are satisfied. If, in addition, there exists 
no c CO such that C""(d0') = F"(yo)C"(yo)o, where yo E C and contains orco), o E A* and 
m are arbitrary, then the specr" of N is purely singular continuous and supported on a 
generalized Cantor set (i.e. a perfect nowhere dense set) of zero Lebesgue measure. 

We have already noticed that our substitution 
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Proof See [XI. 

As before we have that a" = A t A and that <(A) = ACBACBB, but this 
time we focus our attention upon the fact that ACB E C (more correctly, r E C, but 
r, = Tr[T"(ACB)]) and that CY(') = A is contained in ACB. Hence, it suffices with no = 1 
and m = 0 for the theorem to apply and the conclusion is reached that the spect" is 
purely singular continuous and supported on a generalized Cantor set. (Note that there is a 
more general formulation of this theorem in [9], but that the version stated here is sufficient 
for our purposes.) 

4. General precious means 

Now we drop the restriction a = 2 and instead let a be an arbitrary positive integer, i.e. 
we have the general values of (A,  c) from (15). It turns out that we have to distinguish 
between the cases when a is even and odd, respectively. There is, however, no fundamental 
difference in the calculations between the cases. The odd case is just more tedious. 

We will follow the same lines as for the silver circle sequence above. First, we need to 
determine the pn from the expansion in (11). This is achieved with algorithm (12) and the 
values of 6, from (18). For a even, we now have 

PO = $U + 1 { P%+l= ' :  n = 0. 1,2,. . . (33) 
P%+2 = 

and for a odd 
I PO = l a +  1 

P3n+I = + 1 
P ~ " + z  = a I psn+3 = fa - 1. 

n = 0 , 1 . 2  ,.... (34) 

In deriving (33) and (34), we have used the relation 5-l = a + 5 .  The periodicity can be 
shown with induction over RJ8, in (12). 

The substitution rules can now be derived for arbitrary values of U in the same way as 
before. Working with the elementary transformations defined in section 2, we obtain for a 
even the period 

= jf;-1 f 2 j f ; / ~ - ~ ? 2 f ; / 2  (35) 
"a/Z-IA and the transient T, 

and the transient f2. When a > 3 and odd the period becomes 
T2T,@-'. Note that for a = 2 we recover the period given in (20) 

fOdd = j fy-1) /2f2f '"- l ) /2j~- l  1 3 f ZST3 - ̂ 0-3)/2f2f/u+1)12 (36) 

and the transient f y -3 ) '2 f2 f /u -1 )12 .  These transients are not the shortest possible, but 
instead we have chosen them in such a way that the sequences (.")El and ( p n ) z o  turn 
into 

(37) 
(aA)E1 = ( 1 , u 7 a , a ,  ...I 
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after they have been applied. This will correspond to values of (A,  () other than those in 
(IS), depending on whether a is even or odd. From (7). (ll),  (18), (33) and (34), we obtain 
these new values for a even as 

M Hornquist and M Johansson 

and for a odd as 

(38) 

(39) 

Note that if we apply the transient and have a > 2 (i.e. with the values of (A,  () in (lS)), 
then the operator U should be applied in the form of (14). Otherwise (i.e. without transient, 
corresponding to the values of (A', 5') in (38) or (39)) the operator applies in the form of 
(13). With formula (29) and the following relation from [17]: 

Tr(0"A) = d,,lTr(Q)]Tr(OA) - d,,-1rr(@)J Tr(A) (44) 
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0'-3012 u/Ztl  ua/2-1 

u2-3a/2+1 a12 012 
+ I  =Y, rn 

Yn+1 = Y" r" U* 

Zn+1 = Y"-1Un 
2 U - k  a+l U 

r n t i  = Y, rn U, 
"'-"I2 u/2 u/2+1 

U.+I = Y, r, U, 
&./2-l 0 /2 t l  "12 . Wn+1 = Y. r" un 
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Choose the set CLven as CgVen = [ y ,  r, t ,  U). It is shown as before that the associated 
substitution d&, this time from (48), is semi-primitive and theorem 1 still applies. With 
this extension, the word &="(A) starts with the square of an element in C&,. i.e. we can 
have no = 1 and m = 0 in theorem 2. We also have that yo = ACB"-' contains do) = A 
so the conclusion is reached that for all even a 2 2, the spectrum of the sequence with 
parameters (A', c') from (38) is purely singular continuous. 

Next we turn our attention to the nature of the specmm for all odd a > 3. That (odd is 
a primitive substitution is easily seen from (42). This time, however, eau does not possess 
any right fixpoint, but since & has, for example, a right fixpoint with do) = A and a left 
fixpoint with a,@) = A, we can focus upon this substitution instead. With this choice, we 
also see that (4) holds for all n. Now let @odd be defined from (47) and codd = [ x ,  y ,  r ] .  
Then it is seen from definition 5 that is semi-primitive for all odd a > 3. Using 
the fact that a(o) = A ,  which implies that e2dd(do)) contains A A  and A E a, it is clear 
that theorem 1 is fulfilled. In order to show that theorem 2 also applies, we perform the 
same 'trick' as before, namely to enlarge the set B. This time the set i s  enlarged with 
s, = Tr[T"(ACB''-')/2A(a-')~Z)], which we choose to incorporate in the reduced trace 
map (47) as 

0'/2-1/2 a'/2-.+l/Zr.S"l-n+l 

4 2-a~/2+3"'/2-U+l/Z o'/Z-3u'fZ+3~'/2-3a+l/2 a'+& (49) S.+l = x; 1 U" rn 

*"+I = x, Y" n n  I Y ~ + I ,  zn+ll m+I, %+I I wn+l as in (47). 

Now the set CAd is chosen to be C& = ( x .  y ,  r, s] and the substitution #Ada is from (49). 
That $Ldd is semi-primitive and that theorem 1 is still applicable is obvious. The main point 
here is that e:dd(A) begins with (ACB('-1)~2A('-1)/2)2 and Tr[T"(ACB'~-')/2A(u-')/2)] = 
s, E CLdd and that yo = ACB("-')flA(n-')/2 contains do) = A.  This also means that 
theorem 2 is fulfilled and, thus, we have shown that for the values of (A', (') given in (38) 
and (39). our physical model (1) has a purely singular continuous spectrum for all positive 
integers Q 2 2. 

and &)EO=, = (1, a, a , .  . .), 
but that A # $ in (38) for a even. A natural question to ask is if we will then obtain 
a substitution rule without any transient if we also consider the values A = 1 and 
(u,)Z, = ( I ,  a,a, . . .) for a even. The answer turns out to be in the affirmative, but 
we cannot guarantee the existence of a purely singular continuous spectrum in all cases. 
The calculations to show this are as before and we will not go into detail describing them, 
but instead just sketch them briefly. First, the p n  becomes 

We see that the values in (39) for odd values of a are A = 

This yields the period for the transformation as 

(51) 
- -0/2-1 - f = ST3 T2f;" 

and now we do not have any transient. The corresponding substitution rule is 
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In this case, the operator U takes the form in (13) for all even values of a. Also, this time 
the set B can be chosen as B = [ A ,  B. C, A C B ,  BC,  A C ]  and we keep the notation from 
(30). For a > 4, we have the following form for the reduced trace map: 

We consider here gz instead of < which yields fixpoints for the substitution with do) = 
a,@' = A.  This choice makes (4) valid for all n. Since F Z  is primitive and &A) contains 
AA,  we have that with the set C chosen as C = ( x ,  y ,  r ) ,  the substitution 4 is semi-primitive 
and, hence, it is clear that theorem 1 is fulfilled. Using the same technique as before, we 
enlarge the set B with t,, = Tr[T"(CBU12-1An/Z+')].  The reduced trace map can now be 
expanded via 

With C' = [ x ,  y .  r, t ] ,  the word Cz(A)  begins with the square of an element in C and then 
it is not hard to see that both theorems 1 and 2 apply, i.e. the spectrum is purely singular 
continuous for a > 4. When a = 2, the full trace map is given by 

With C = ( x ,  r, w ) ,  it is obvious that theorem 1 is fulfilled. However, this time there seems 
to be no way to fulfil the requirements in theorem 2. This is because the word p"O(aco)) does 
not begin with the square of any word for a = 2 (as far as we can see). This means that 
for a = 2 we cannot exclude the possibility of eigenvalues in the spectrum. This statement 
is also true for the extended version of theorem 2 given in 191. 

5. Summary and conclusions 

The purpose of this paper has been to study the nature of the electron spectrum for a 
quasiperiodic tight-binding model with on-site potential chosen according to a class of 
circle sequences. To be able to apply the theorems from [8], giving sufficient conditions 
for the spectrum to be singular and singular continuous, respectively, we have derived 
substitution rules for the sequences following the procedure described in [14].  Explicit 
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expressions for the rules generating sequences with parameter values according to (39) are 
given in (42) and (52) for a odd and even, respectively. By studying the corresponding 
reduced trace maps, we find that the spectrum for these parameter values is purely singular 
continuous for all a f 2. (The case a = 1 was treated already in [8].) For a = 2, the 
spectrum is shown to be singular (i.e. there is no absolutely continuous part), but we cannot 
exclude the existence of eigenvalues (point spectrum). However, one should note that also 
for the ThueMorse sequence, the theorems in [SI and [9] could not be used to exclude the 
existence of eigenvalues, but that this could be achieved using a more detailed analysis 171. 
Thus, a more detailed investigation of the dynamics of the full trace map in (55) might also 
lead here to a similar result. 

The singular continuous nature of the specmm was also shown for the class of circle 
sequences with parameter values from (38) for even values of a using the substitution rules 
in (40). Concerning the originally discussed case, with 5 equal to an inverse precious 
mean and A = as in (15), we note that we cannot, with the method from [14], derive a 
substitution rule acting on single letters for a # 1. We can, however, use the rules (40) and 
(42) to generate the sequences for a even and odd, respectively, if each letter is replaced 
by a finite word according to (41) or (43) in the final sequence. In the transfer-matrix 
formalism, this means that we must consider basic matrices which are not of the simple 
type (25), but instead consist of products of such matrices. Since it  is not clear to us to 
what extent the theorems from [SI can be extended to cover such a case, our analysis does 
not allow us to draw any conclusions about the nature of the spectrum for these sequences. 
We believe that this is a problem that deserves further investigation in the future. 
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Appendix. Detailed derivatlon of a trace formula 

To obtain the trace map in (31), we have to apply the relation in (29) several times and also 
use the fact that the value of a trace is always invariant with respect to cyclic permutations 
of the matrices. Explicitly this can be achieved as 

xn+l = Tr[T"+'(A)] = Tr[T"(ACBACBB)] 

= Tr[T"(B)T"(ACB)T"(ACB)] 

= Tr[T"(ACB)T"(ACB)T' (B)] 

= Tr[T"(ACB)lTr[T"(ACB)T"(B)] - Tr[T"(B)I 

= Tr[T"(ACB)ITr[T"(BACB)] - Tr[T"(B)I 

= Tr[T"(ACB)I Tr[T"(BBAC)I - Tr[T"(B)I 

= Tr[T"(ACB)](Tr[T"(B)] Tr[T"(BAC)I - Tr[T"(AC)]) 

- Tr[T" (B)] 

= rn(ynrn - w4 - yn. 
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In the same way. all the other fm"1ae in (31) can he found. 
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