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Singular continuous electron spectrum for a class of circle
sequences

Michael Hérnquist} and Magnus Johanssoni

Department of Physics and Measurement Technology, Linkdping University, $-581 83
Linképing, Sweden

Received 31 August 1994, in final form 8 November 1994

Abstract. We derive substitution rules for a class of binary quasiperiodic sequences generated
by circle maps whose rotation numbers are obtained from the precious means. The nature of
the electron spectra for the corresponding diatomic chains is studied in the nearest-neighbour
on-gite tight-binding approximation using the transfer-matrix technique. By studying properties
of the trace maps, we find that the spectrum is purely singular continuous in most of the studied
cases.

1. Introduction

During the last decade, much theoretical and experimental study has been devoted to the
subject of one-dimensional deterministic aperiodic systems. Concerning the theoretical
investigation of the electronic properties of such systems, the nearest-neighbour on-site
tight-binding model or, equivalently, the discrete Schrisdinger equation, described in natural
units by

Vien + t{Cn—1 + Cpa1) = Ec, (1)

has received the most attention. It has been realized that these systems exhibit a large variety
in their spectral properties, depending on the explicit choice of the on-site potential. If the
on-site potential V, takes values from a continuous set, as in models for incommensurate
crystals, the nature of the spectrum depends generically on the magnitude of the amplitude of
the on-site potential compared to the hopping integral ¢. The spectrum is usually absolutely
continuous when the potential amplitude is small, a pure point when the amplitude is large
and has a mixed character with mobility edges separating regions with absolutely continuous
and point character for intermediate amplitudes [1]. A notable exception from this generic
behaviour is the famous Aubry—André model [2], where the on-site potential V), is obtained
from

Vy = Veos(Zmnt + o). 2)

Due to duality, the character of the specttum for this model will change from purely
absolutely continuous to pure point at the critical value ¥V = 2|t|, where the spectrum
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is purely singular continuous [3,4]. Moreover, if the incommensurability £ is chosen as a
Liouville number [3), the spectrum of this model will keep its singular continuous nature
even for supercritical values of the potential strength.

If singular continuous energy spectra are somewhat exceptional in the study of
incommensurate crystals, they appear much more frequently in models for one-dimensional
quasicrystals or aperiodic superlattices, where the on-site potential is restricted to take values
from a finite set of numbers. Examples of models where the spectrum has been rigorously
proved to be singular continuous regardless of the potential strength are those obtained by
choosing the on-site potential according to Fibonacci {5], Thue-Morse [6,7] and period-
doubling [7] sequences. These results were obtained using the trace-map technique (see
section 3) which is applicable to all sequences that can be generated by substitution rules.

In order to obtain a general description of the spectral properties of substitutionally
generated systems, an important result was obtained recently by Bovier and Ghez {8,9].
In terms of some properties of the substitution rule and its corresponding trace map, they
give sufficient conditions for the spectrum to be purely singular and singular continuous,
respectively. (These results will be described in detail in section 3.) In this context, one
may note that, although most of the sequences treated as examples in [8] fulfil at least
the conditions to have a spectrum of zero Lebesgue measure, there is an exception in the
Rudin-8hapiro sequence. For this sequence, numerical investigations have indicated that
the spectral properties depend on the potential strength [10, 11], and that for most values of
the on-site amplitude the spectrum has a pure point character {11]. One should thus bear
in mind that the class of sequences giving singular continuous spectra probably does not
inctude all sequences that can be generated by substitutions, and that further investigation
of the sequences which belong to this class is important.

One sequence shown in [8] to belong to this class is the one usually denoted in the
literature as the ‘circle sequence’ [8,10,12,13]. It is a binary quasiperiodic sequence
obtained from a circle map by dividing the circle into two equal parts representing the
two values in the sequence and using a rotation number related to the golden mean (see
section 2). It could also be viewed as the sequence obtained by taking the sign of the
potential in the Anbry-André model (2). The rigorous treatment of the speciral properties
for this system was possible due to the work of Aubry et al [14] who showed that the circle
sequence could also be generated by a substitution rule using a process that will be described
in section 2. However, this technique is by no means restricted to rotation numbers related
to the golden mean, and one may ask the question whether other rotation numbers will also
result in sequences giving singular continuous spectra. As a first step towards the answer
to this question, we will, in this paper, treat the case with rotation numbers obtained from
arbitrary precious means as defined by (15) below. To make the paper as self-contained as
possible, we will staie the main results from [14] and [8] in sections 2 and 3, respectively.
As an illustrative example, we study here, in particular, a sequence related to the silver
mean. We derive its substitution rule in section 2, its corresponding trace map in section 3
and show that it fulfils the conditions to give a singular continuocus energy spectrum. The
case of a general precious mean is then treated in section 4 and concluding remarks are
made in section 5.

2. The sequences

One standard way of generating binary quasiperiodic sequences is by using a circle map
{see, e.g., {14]). For completeness, we give here a short recapimlation of the method,
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Consider a circle with vnit circumference. Let A be the fraction of one of the two elements
in the sequence and let ¢ be an irrational number. Divide the circumference of the circle
into two parts, of iength A and 1 — A, respectively, and associate the value +V to one part
and —V to the other. By walking around the circle in steps of length ¢, and for each step
picking the value of either +V or —V, onec obtains a binary quasiperiodic sequence with
the two incommensurable frequencies £ and 1. Analytically the sequence is given as

(Vidnzo (3)
where
V, = V{—1 4+ 2int(rnl) — Int(nf — A)]}. 4)

Here Int(x) denotes the integer part of x, defined as Int(x) = max{j € Z : j < x}. All
sequences which can be constructed in this way we will collectively cail circle sequences.
Note that this is a generalization compared to what is usually denoted as “the circle sequence’
[, 10,12,13], which corresponds to A = % and ¢ = 1%, where T is the golden mean
V5+1)/2.

To fagcilitate analytical investigations of physical properties of systems generated by
these sequences, Aubry et al [14] have proposed a way to obtain a substitution rule which
generates a sequence equivalent to the one obtained from the circle map. We will now
briefly discuss some formalism concerning substitution rules. The notation will mainly
follow the one used in [8].

Let A be a finite set, called an alphabet, the elements of which we call letters. Any
ordered combination of elements in .A, where each element can occur an arbitrary number
of times, is called a word. The set of all words is denoted by A*, which makes it possible
to define what we mean by a substitution &.

Definition 1. Let £ be an operator 4 — A*. We then call & a substitution rule for the
alphabet A,

Since we want the substitution rule to apply to elements in .4* as well as in A, we extend
it to be an operator A* — A* by the rule

E(w) = §(ao)§(e) - -~ Eotn) )

where @ = ooy - - -ty € A* and o, @y, .. ., @y € A We will also use the notation £* to
denote a k times repeated application of the substitution rule. If a substitution rule is to be
useful in generating an infinite sequence of the form £%(«), where ¢ € .4, it has to possess
at least one fixpoint.

Definition 2. Let & be a substitution rule and @ a one-sided infinite word w € A*. If
fw=w (6)

we call @ a fixpoint to the substitution rule £.
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We will use both right and left fixpoints, where the former corresponds to sequences
such as (V,)J° and the latter to (V,,):},o. There is an easily verifiable criterion [15] for the
existence of at least one right fixpoint to a substitution (namely £%°(a®}).

(i) There exists a letter «©, &'® € A, such that the word £('?) begins with «@,

(ii) The length of the words £* (@) goes to infinity as k = oo.

In the same way, we can guarantee the existence of a left fixpoint b ar replacing the first
condition above with “there exists a letter affo) such that the word E(oef ) ends with o ©,

The idea in [14] of obtaining a substitution rule for the binary sequence defined by
(3) and (4) relies on the introduction of a set of elementary transformations, denoted by
8, 11, %2 and T‘3, resulting in an exact renormalization transform acting on the parameters
(A, ). Each elementary transformation is associated with an elementary substitution rule,
which we denote by &, &7, &, and &7, respectively. Although the final sequence should
be binary, we have to use an alphabet with three elements, referred to as A = {A, B, C).
Before we introduce these transformations, we have to review some number theoretical
results, They will be stated here without proofs, which can be found in {14, 16]. We choose
to rewrite £ as a continued fraction expansion, i.e. as

1
'S = )]

a +

az+r

where all a, are non-negative integers. It is possible to show [16] that the sequence of best
rational approximants to ¢ is (r,/5,)52,, where

Iy f agrp-1 + fi-z ®)
g = 0 Ty = 1
and
{ Sn iansn—l + -5':-2 ©)
sp=1 5] =4y,
Let §, be a measure of how close every rational approximation (r,/s,) is to £, i.e. set
8y = Sul — 1. (10)

Now it is possible to show [14] that any A can be expanded ip 8,, i.e. we can always find
non-negative integer coefficients p, such that

A=) i an

There is also a unique way of determining the coefficients p, to obtain the best
approximation of A with a finite number of terms. Namely
set Rg = A

R
Py = min {a,,.,.l, | +Inc (T)] (12)
Rn+1 = Rn - pnsl’!
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Once the p, are obtained, it is straightforward to find the transformation which gives the
substitution rule. First, define the elementary transformations S, T3, T» and 73 as:

S a=a+1
a, = Gnyi nz?2
p=p+1
Po=Part  n21

Es(A)=C £s(B) = B E(C) = A

Ty: a{=a1—1

7
]

22
Py = Pn nz0
Er(A) = AC £r,(B) = BC Ern(Cy=C

a =a, n

7 a=a -1
a, =ap nx2
po=1
Pu = Pn nzl

£n(A) = AB &r,(B) = AC En(C)=C

Iy ay=a;—1
a, = a, nz2
po=po—1
Pr=pn n21

En,(A) = AB én,(By=B £r,(C) = C.

The A’s, B's and C’s are the elements of the alphabet .4 upon which the substitution acts,
the p, are from the algorithm in (I12) and the a, from the continved fraction expansion in
(7). Then, acting on the a, and p,, let

i § apply when ¢; = 1;

(i) T} apply when a; > 1 and pp = 1;

(iii) T, apply when a; > 1, po =2 and p; > 0; and

(iv) T5 apply when a; > 1 and either pp > 2 or p; = 0.

Finally, let a, = a;, and p, = p}, for all » and repeat the procedure.

If the a, and p, are periodic (at least for n > N, where N is some fixed integer)
we will also, after a while, obtain periodicity in the string of S and T:, and the total
transformation is obtained as a product of the elementary transformations in the period.
This tota] transformation will be an exact renormalization operation which the associated
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substitution rule £ is defined as the composition of the corresponding efementary substitution
rules. In general, there will be a string of elementary transformations, a ‘transient’, preceding
the period and in such a case we must apply to the word £%°(«{0)) the substitution rule
corresponding to the transient in order to obtain the original sequence. Finally, introduce
the operator v : A — R ag

v(A) =+V
v(B)= -V ifA < (13)
v(C) = -V

or
v(d)=+V
vBy=+4V ifa=¢ (14)
wCy=-V

and set V, = v(a,), where &, € A is the nth letter in the sequence £ (@), With this we
are back to the sequence in (3}).

Generalizing the ordinary ‘circle sequence’, we now turn our attention to the case when
¢ is equal to the inverse of an arbitrary precious mean, i.e. when all non-negative integers
a, in (7) are equal, ¢, = @, n = 1,2, .... Keeping the valpe A = % the pair (A, ¢) can be
expressed as

=1
2
{ ) | (15)

The case a = 1 is just the image by § of the case ¢ = =2 discussed above. The sequences
(radizg and (5,)22, from (8) and (9) are now connected as r, = §,~1, which turns the r,
into ‘generalized Fibonacci numbers of order @’. Explicitly this means

Fn =ary-1 +rp—2
16
{ o= 0 r = 1 ( )
which is possible to write in closed form as
£ — gy
= e, 17
n ;_1 +; ( )

‘We will also need an expression for the 8,, which can be obtained from (10) and (17) as
8y = rug1{ — 1y = (“l)ngnH- (18)
To illustrate the main ideas, we will now study the particular case a = 2. In section 4 we

will return to the more general case of an arbitrary a.
With 2 =2 in (15), we obtain

A=3 19)
t=+2-1



Electron spectrum for circle sequences 485

From the algorithm in (12), we obtain (p,)2, =(2,2,1,2,1,2, 1,2,...). This sequence is
periodic and so is the sequence of a,. This makes it possible to associate a finite substitution
rule with the sequence generated by the circle map. Before we arrive at the periodicity in
the string, we have a transient. Here this transient turns out to be the f‘g-transformation,
applied once. A calculation gives the period for the transformation as

T = §HHSTT (20)
where the notation T has been used to denote the whole transformation. The substitution

rule associated with this transformation is now obtained as & = §sfn, & €5En &7y, acting on
the letters A, B and C, respectively. Explicitly,

£(A) = ACBACBB
£(B) = ACBBCBB o3}
£(C) = CBB.

To arrive at the sequence associated with the values of the parameters (A, ) given in (19),
we start with a seed «‘® upon which we let the substitution & act an infinite number of
times. Subsequently, we apply to the generated sequence the elementary substitution that
preceded the period, i.e. we apply the transient &7, which means that we turn every A in
the final sequence into AR and cvery B into AC. In the case when we do not use the
transient, we obtain a sequence, which we will call the silver circle sequence, corresponding
to parameters {A’, £”) with values

) g 1( 1)
Am—— = {1-—=

2(11+é;) 1 2 V2 @2)
c’: —_ —

1+¢ V2

This can be seen from the formulae for the transient, i.e. from the elementary transformation
'fz above. The last step is to obtain from the letters A, B, C the original sequence of +V.
This is achieved by applying the operator v in the form of (14), if we use the transient
to obtain the sequence described by (19), and otherwise in the form of (13) to obtain the
sequence described by (22).

For further use we introduce the concept of primitive substitution [15].

Definition 3. A substitution £ on an alphabet A is called primitive if there exists an integer
% such that for any two letters o, 8 € .A, the word £*() contains the letter 3.

We see immediately that our substitution rule (21) is primitive and that & = 2 in the
definition is sufficient. We also see from the criterion below definition 2 that it has one left
and two right fixpoints which are obtained for «f” = B, a® = A and @ = C. Note,
however, that these two values of '@ result in the same sequence, except for the first two
elements corresponding to n = 0 and r = 1, respectively.

3. Electron spectrum

Consider the sequence (V)32 defined in (3) and (4) and extend it to negative n as described
in [9]. This can always be achieved in the following by choosing an appropriate generator
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afo’. of a left fixpoint and then concatenate the two fixpoints to an infinite sequence

£9(a/ )£ (a®), observing that the word ¢{®a!® is contained in £*(a®) as requested
in [9]. With this extension, equation (4) holds also for negative n if we choose o:fo) properly.
This is indeed the case for all sequences that we consider.

Let this sequence represent a one-dimensional quasiperiodic structure of two different
types of atoms placed equidistantly on an abscissa. Let V, also denote the potential on site
n and stick to the form of the Schrédinger equation given in (1). If we define the transfer

matrix T, as
E-Ve 4
. !

we can rewrite (1) as

Cutl } _ Cn
( C: ) =Ty (Cn—i ) . (24)

This makes it natural to consider the transfer matrices as operators T : A — SL(2, R) via
E—v(or _1
r@=("5 3) 5)

where o € A and v is defined by (13) or (14). We can also let T operate on elements in
A*, i.e. words, according fo

T(w) = T(@n)T (@p-1)--- T (o) (26)

where @ = ooy -, € A* and o, 0,...,a, € A. Note that the order of matrix
muiltiplication is opposite to the order of the letters in the word. This can be seen from
(24). Now we can combine the map T with the substitution rule £ via

E'NT (W)} =T"(w) = TIE" (@)} we A (27)

where £" as before is understood to be the substitution rule applied n times. This makes it
possible for us to write 7" (c) expressed as

T"@)=[]7""B) BecA (28)

peX

where X is the set having the [etters from &(x) as elements. The two theorems from [8]
that we use below, however, do not deal with the transfer matrices themselves, but with
their traces. Therefore, we have to introduce the concept of trace map, and, also from [8],
the concepts of reduced trace map and semi-primitive substitution.

Definition 4. Let w € A" and use the notation x,(w) = Tri{T"(w)]. Extending the action
of £ in the same way as in (27), we write x,(w) = E[x,—1{«)]. With a trace map we mean
a mapping R* — R* such that x,{(w) is a function of x,_;{), x, € R*, k is the cardinality
of some set B C A* and w € B.
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The reason why we introduce a new set B is because it is, in general, not possible to
find a trace map just for A4 for an arbitrary substitution rule. However, if we enlarge to a
finite set 3 such that . A C B C 4", it 1s shown in [12] that we can always find such a trace
map if we choose B in an appropriate way. In order to obtain an explicit expression for the
trace map, one can, for example, use the formula

Tr(@ABE) = Ti(@A) T(EE) + Tr(AE) — Tr(A) Tr(E) (29)

which is obtained from the Cayley—Hamilton theorem and valid for all matrices of the group
SL(2,R).

Consider now the special case of the silver circle sequence, defined from the substitution
rule in (21) with ® = A and ¢ = B (or, equivalently, from the values (A’, £’} in (22)).
The two theorems from [8] apply only to sequences generated by a substitution rule which
acts on single letters and, therefore, we cannot keep the values (A, ¢) from (19). Note also
that for the use of the theorems, it does not matter if we apply v from (13) or from (14), or
even if we let A, B and C take three different values. From an inequality in [12], it is clear
that our set I3 will not contain more than eight letters. However, in [13] it is shown that a
substitution rule consisting of m letters has 3m — 3 as a minimum number of elements in B.
Here it turns out that we can choose the set as 5 = {A, B, C, ACB, BC, AC}. Introduce
the following abbreviated notation for the traces of the transfer matrices associated with the
elements in B:

[ x, = TY[T"(A)]

Yo =TT (B)]

z; = Tr[T*(C)]

s = Te[T"(AC B)} = Tr(T™(B)T™(C)T"(A)]
v, = TI[T*(BC)]

wy = Te[T"(AC)].

(0

Using (29), it is simple but tedicus to obtain a mapping from generation # to generation
n -+ 1. Performing the calculations in all cases (a detailed derivation of the first case can be
found in the appendix} gives the following trace map:

[ Xps1 = (YnPn — Wakln — ¥n
Ynt1 = (Yntn — Zn)(Ynfn — Wa} = Xp
Znt1 = YnUn — In
1 = [(Yatn = Z0)(nrn = W) = Xallrn(InVn — 20)(Yula — Wa) — FaXn (31}
— Yn(¥ntn — Za) + Un] = Yurn 4 wy
Untl = (FeVn = Za)[(Vaths = Za}(Yufn — Wa) — Xu] — Yalfa + Wy
L Wnat = [(nVn = Za)(Faln — Wa) — Xnlrn — (Yats — Za)Yn + V.

Note that there is nothing unique about this specific trace map, or even with the set 5.
Several different maps can be obtained for every substitution rule, which is clear from the
construction above. In order to proceed from here, we need the corresponding reduced
trace map, defined as the mapping that is obtained if, in the full trace map, we keep only
the monomial of highest degree and neglect all other terms. With degree we mean the
number of letters associated with each variable, i.e. deg(x,) = deg(y,) = deg(z,} = 1,
deg(v,) = deg{w,) = 2 and deg(r,) = 3. For example, deg({y,v,) = 3. Keeping this in
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mind, it is clear from (29) that every trace map has a unique reduced trace map with all
coefficients equal to unity. In the case of the silver circle sequence, the reduced trace-map
becomes

r 2
xH+| = yﬂrn
Ynt1 = yfr,,u,!
Zptt = YnUn
43 2 (32

Pl = Ypla Uy
3 2
Up41 = YpTalUy,

2.2
| Watt = yurn Un.

Omitting all subscripts in the reduced trace map and changing the names of the elements in
the set 3, such as B = {x, y, z, r, v, w}, we can consider (32) as a mapping ¢ : B — B*.
This mapping ¢ is not uniquely defined because the order between the elements is not
specified. The ambiguity will not, however, give rise to any problems. To characterize
an important property of the mapping ¢, we introduce the concept of semi-primitive
substitution [8].

Definition 5. A substitution ¢ on an alphabet B is called semi-primitive if

(i) there exists a subset C < B such that ¢ maps C into C* (where C* is defined from C
in the same way as .4* from .4 above) and the restriction of ¢ to C is a primitive substitution
(cf definition 3); and

(ii) there exists a positive integer m such that for each letter 8 € B, ¢™(8) contains at
least one letter from C.

To see that ¢ really is semi-primitive, we choose the set C as € = {y, r, v}. Now it is clear
that C < B and that ¢ maps ¢ into C* (cf (32)). From definition 3, it is obvious that the
restriction of ¢ to C is a primitive substitution with £ = 1. Finally, we note that whatever
letter in B we start with, in the next step when the substitution has been apphied once, we
will always have at least ao letters from C. Hence, the substitution ¢ associated with our
reduced trace map is semi-primitive.

From [8] we now obtain the following theorem.

Theorem I. Let § be a non-constant primitive substitution with no constant iterate defined
on a finite alphabet A, Let v be a non-constant map A — R and X the Schrédinger operator
implicitly defined by (1). Suppose there exists a trace map with an associated substitution
¢, defined on an alphabet B as described above, which is semi-primitive. Assume further
that there exists k < oo and '@ € A such that £%(«'®) contains the word 88 for some
B € B. Then the spectrum of H is singular.

Proof. See [8].

We have already noticed that our substitution & is primitive and that ¢ is semi-primitive.
Further, we have that with &® = A € A, §(A) = ACBACBB. Since B € B, the theorem
applies and the spectrum is singular, i.e. supported on a set of zero Lebesgue measure,
In [8] we also find the following theorem.

Theorem 2. Suppose the hypotheses of theorem 1 are satisfled. If, in addition, there exists
ng < 0o such that §™ (e = £7 (3™ (p)w, where ¥ € C and contains @, w & A* and
m are arbitrary, then the spectram of H is purely singular continuous and supported on a
generalized Cantor set (i.e. 2 perfect nowhere dense set) of zero Lebesgue measure,
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Proof. See [8].

As before we have that ™ = A € A and that £(A) = ACBACBERB, but this
time we focus our attention upon the fact that ACB € C (more correctly, r € C, but
rn = Ti[T"(ACB)]) and that @ = A is contained in ACB. Hence, it suffices with ng = 1
and m = 0 for the theorem to apply and the conclusion is reached that the spectrum ig
purely singular continuous and supported on a generalized Cantor set. (Wote that there is a
more general formulation of this theorem in [9], but that the version stated here is sufficient
for our purposes.)

4. General precious means

Now we drop the restriction a = 2 and instead let @ be an arbitrary positive integer, ie.
we have the general values of (A, £) from (15). It turns out that we have to distinguish
between the cases when ¢ is even and odd, respectively. There is, however, no fundamental
difference in the calculations between the cases. The odd case is just more tedious.

‘We will follow the same lines as for the silver circle sequence above. First, we need to
determine the p, from the expansion in (11). This is achieved with algorithm (12} and the
values of &, from (18). For a even, we now have

Po = %a—i—l
Pous1 =a n=012,... (33)
qu—s-2=%a
and for @ odd
o= %a+1
=1
Pt =34 +1 n=0,1,2.... (34)
Pintz =1a

_ 1
Ptz =38 — 1.

In deriving (33) and (34), we have used the relation ~! = a 4+ ¢. The periodicity can be
shown with induction over R, /3, in (12).

The substitution rules can now be derived for arbitrary values of a4 in the same way as
before, Working with the elementary transformations defined in section 2, we obtain for a
even the pericd

Toven = ST BETHA1 Ty 112 (35)

and the transient T“" - [T Ta"2 ', Note that for a = 2 we recover the period given in (20)
and the transient Tg When a 2 3 and odd the period becomes

Foas = ST PP 5 01§ 3D/, Flat 2 36)

and the transient T(" D2, T(“ D/Z " These transients are not the shortest possible, but
instead we have chosen them in such a way that the sequences (a,)%; and (pa)ieg turn
into

{(an):o[ =(1,a, a,a,...) (37)

(pn r=0 = (I! Pts P2!p37---)
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after they have been applied. This will correspond to values of (A, ¢) other than those in
(13), depending on whether a is even or odd. From (7), (11), (18), {33) and (34), we obtain
these new values for g even as

. ¢ __a+2—q/a5+4

A = =

eer 21+ 1) 4a (38)
, | a—2++al+4
Leven = 14+¢ - 2a

and for a odd as

da=AhA=3

; 1 a—2+at+4 (3N
€0d6= 1+§- = za *

From (35) we now obtain the general substitution rules for all even a > 2 as

geven(A) = A(CBa-lA)aﬂ(CBa)aﬂ
geven(B) = A(C Ba—-l A)a/z—-l (C B )a/2+l (40)
geven(C) =CB®

ang the corresponding transient as

A > ABY2CU1
B+~ AB1ce/? (41)
Cr C.

For all odd a 2= 3 we obtain from (36)

Eoda(A) = CBEHI2 AG=D2 4 (€ Bla-D2 A6+ 1/2ya=1 ¢ B@+1)/2 gla=1)/21(a~1)/2
% [A(CB@= 12 g@+i)2yailas])/2

Soaa(B) = CBHI/2 AU~DI2[ 4 (0 Bla-1/2 4atD/2ya=L ¢ gD/ g2y~ (42)
% [A(CB(E—|)/2A(a+1)/2)a](g+3)/2

£040(C) = A(C B2 glat1)2ya

with the corresponding transient

B+ ABWM1p(e+n2 (43)

{A > ARW-D20w-1)/2
C—C.

Note that if we apply the transient and have @ 2 2 (i.e. with the values of (A, {) in (15)),
then the operator v should be applied in the form of (14). Otherwise (i.e. without transient,
corresponding to the values of (A7, £’) in (38) or (39)) the operator applies in the form of
(13). With formula (29) and the following relation from [17]:

Tr{(©®"A) = d,[TH@)} TH(OA) — dp—1 [Tr{@)] Tr(A) (44)
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we can obtain a trace map for the substitutions above. Here, @, A € SL(2, R) and d,(x)
is defined as

l dn+] (x) = xd,,(x) —dn_1(x)
do(x) =0 di(x) =1L

This means that if we set d,(x) = 5,-1(x), we have s, as a Chebyshev polynomiat of the first
kind [18]. However, since the trace maps for general @ involve very lengthy expressions and
since we are not interested in their exact form, we choose not to write them down explicitly.
‘What is important for our purposes is how many and which elements the set B will contain.
General considerations yield that to obtain a trace map we do not need to enlarge it compared
with the case of the silver circle sequence above, i.e. B = {A, B,C, ACB, BC, AC}. We
will also keep the notation from (30) concerning the traces.
When a is even, we obtain the reduced trace map for the substitution rules (40) as

(45)

Xpyy =y T30/2,01 248021
Yy = Yy a2 a2
Zpt1 = y,‘,‘_lv,, 6
| o = yR ety
Upyy = Yo mU2p8f2ye(241
Wpyy = y& ol
and for the rules in (42) when a > 3 is odd as
[ Xywl = xﬁafz"“z/z"f'a-]).:3/2-—3az/2+a—lr:1+1
Yoi1 = AP/ B @20 22 ]
i Znps = x:2j2—a/2+1y32/2—3uf2r: .
Frpy = XL 2430/2 050 24025 2 a2
Upy1 = x£3/2+a/2+l y't:"/l—ai-a/'ZaZr:2+a+]
Wogt = xﬁ‘/2+ﬂf2y:3;’2—u’—a/2~1 r:2+u+l.

The final step is to apply theorems 1 and 2 to show that the spectrum is purely singular
continuous. First we consider a even. We see from (40) that E?""“” possesses one right
fixpoint with, for example, @@ = A4 and one left fixpoint with ¢ = B. This choice is
the appropriate one for (4) to hold for all #. It is not hard to realize that £, is 2 primitive
substitution (with & = 2 in definition 3} and with the set Ceyen = {y, 7, v} that geven, defined
from (46), is semi-primitive (with m = 1 in definition 5). With the observation from (40)
that &.ven(A) contains BB, it is clear that theorem 1 is applicable. That the same is true also
for theorem 2 is a more delicate problem for a 3 4, since the word £72, (@) does not begin
with the square of ary element in Cove {except for the case & = 2, which was treated in the
previous section). However, if we let @ = A and ng > 1 then &2, («®) always begins
with (AC B“~1)? and we are led to include into the set B the element #, = Tr[T"(AC B*™1)].
This yields a possibility for enlarging the reduced trace map in (46) to a form better suited
for our purposes. We choose to enlarge it as

22 4af2—1 92—
Vnil = Yp a2ty wly f U:'Iz
33,2 — 2 2
taii }’: 3at 2424 2,.;: 'IZ—HUﬁ 12 (48)

Xntls Zndls Futls Ungls Way) 88 in (46)
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Choose the set C,., as Cl., = {y,r,t,v}. It is shown as before that the associated
substitution ¢.,... this time from (48), is semi-primitive and theorem 1 still applies. With
this extension, the word £,,.,(A) starts with the square of an element in C,,,, i.e. we can
have np = 1 and m = 0 in theorem 2. We also have that 3y = ACB*~! contains @ = 4
so the conclusion is reached that for all even ¢ 2 2, the spectrum of the sequence with
parameters (A’, ¢") from (38) is purely singular continuous.

Next we turn our attention to the nature of the spectrum for all odd a = 3. That §qgq is
a primitive substitution is easily seen from (42). This time, however, £,43 does not possess
any right fixpoint, but since £2,, has, for example, a right fixpoint with @ = A and a left
fixpoint with &” = A, we can focus upon this substitution instead. With this choice, we
also see that (4) holds for all n. Now let ¢ygq be defined from (47) and Cogy = {x, ¥, r}.
Then it is seen from definition 5 that ¢oqg is semi-primitive for all odd @ > 3. Using
the fact that «© = A, which implies that £2,(«@) contains AA and A € B, it is clear
that theorem 1 is fulfilled. In order to show that theorem 2 also applies, we perform the
same ‘trick’ as before, namely to enlarge the set B. This time the set is enlarged with
Sp = TA[TM(ACBU-W2A6-12)] which we choose to incorporate in the reduced trace
map {47) as

— w2112 a2 a2 4 g —at]
=Xy n TSy

¥

4n ot 29 43,3 o 3
Syt = x:: [2=g"f2+3e 2 a+1j2y:: J2=3u? [243u% 12 3a+1f2r: +2a (49)

¥ntls Tutls Frtls Ungl, Wy a§ in (47),

X1

Now the set Cy, is chosen to be Cly = {x, ¥, r, s} and the substitution ¢, is from (49).
That ¢, is semi-primitive and that theorem 1 is still applicable is obvious. The main point
here is that £2,(A) begins with (ACB@-1D/2A@-N/2)2 apd T{T"(AC B2 46-1/2y] =
sy € Clyy and that yp = ACB@ D/240-02 contains o'® = 4. This also means that
theorem 2 is fulfilled and, thus, we have shown that for the values of (A', ¢’} given in (38)
and (39), our physical model (1) has a purely singular continuous spectrum for all positive
integers a = 2.

We see that the values in (39) for odd values of ¢ are A = % and {a,)2, =(l,a,a,...),
but that A % in (38) for a even. A natural question to ask is if we will then obtain
a substitution rule without any transient if we also consider the values A = % and
(@), = {1,4,a,...) for @ even. The answer turns out to be in the affirmative, but
we cannot guarantee the existence of a purely singular continuous spectrum in all cases.
The calculations to show this are as before and we will not go into detail describing them,
but instead just sketch them briefly. First, the p, becomes

po=1
{p,,=%a n=123,.... 0
This yields the period for the transformation as
P = §7001 3, e 51

and now we do not have any transient. The corresponding substitution rule is

£(A) = CB/? A%
S(B) = CBn[Z—lAa/?fH (52)
£(C) = A.
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In this case, the operator v takes the form in (13) for all even values of 2. Also, this time
the set B can be chosen as B = {A, B, C, ACB, BC, AC} and we keep the notation from
(30). For a = 4, we have the following form for the reduced trace map:

xn+] = xa,"Z ]y::/2 1
Yap1 = xa/?.y::ﬁ 2
=X
:::: = x:y,‘.’ *ra =
Vsl = J‘:a/2+1yr¢:/2—
wast = 252502,

We consider here &2 instead of £ which yields fixpoints for the substitution with «® =
oz,(o) = A. This choice makes (4) valid for all n. Since £? is primitive and £2(A) contains
AA, we have that with the set C chosen as C = {x, ¥, r}, the substitution ¢ is semi-primitive
and, hence, it is clear that theorem 1 is fulfilled. Using the same technique as before, we
enlarge the set B with &, = Tr[T"(CB%?~! A%/**1)], The reduced trace map can now be
expanded via

Yntl = tn
24 2y
fag1 = x:;z /2 alzyg /2 3al2+lrf: (54)

Xnils Zodls Fugds Ungt, Woyy @8 N (33).

With ¢’ = {x, y, .}, the word £(A) begins with the square of an element in C and then
it is not hard to see that both thecrems 1 and 2 apply, i.e. the spectrum is purely singular
continuous for ¢ 2 4. When a = 2, the full trace map is given by

( Xnpl = Fr
'l = XpWp — Zp
Intl = Xy
‘ Tl = (XpWn — Zn)(Xntn — Un) — Yu
Ung1 = (-xs — Dwy — xp2,
L Wyt] = Xp¥p — Uy,

(55)

With € = {x, r, w}, it is obvious that theorem 1 is fulfilled. However, this time there seems
to be no way to fulfil the requirements in theorem 2. This is because the word £ (a'™) does
not begin with the square of any word for a = 2 {as far as we can see). This means that
for # = 2 we cannot exclude the possibility of eigenvalues in the spectrum. This statement
is also true for the extended version of theorem 2 given in [9].

5. Summary and conclusions

The purpose of this paper has been to study the nature of the electron spectrum for a
quasiperiodic tight-binding model with on-site potential chosen according to a class of
circle sequences. To be able to apply the theorems from [8], giving sufficient conditions
for the spectrum to be singular and singular continuous, respectively, we have derived
substitution rules for the sequences following the procedure described in [14]. Exphicit
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expressions for the rules generating sequences with parameter values according to (39) are
given in (42) and (52) for @ odd and even, respectively. By studying the commesponding
reduced trace maps, we find that the spectrum for these parameter values is purely singular
continsous for all @ # 2. (The case @ = | was treated already in [8].}) For a = 2, the
spectrum is shown to be singular (i.e. there is no absolutely continucus part), but we cannot
exclude the existence of eigenvalues (point spectrum). However, one should note that also
for the Thue-Morse sequence, the theorems in [8] and [9] could not be used to exclude the
existence of eigenvalues, but that this could be achieved using a more detailed analysis [7].
Thus, a more detailed investigation of the dynamics of the full trace map in (55) might also
lead here to a similar resuit,

The singular continuwous nature of the spectrum was also shown for the class of circle
sequences with parameter values from (38) for even values of @ using the substitution rules
in (40). Concerning the originally discussed case, with ¢ equal to an inverse precious
mean and A = % as in (15), we note that we cannot, with the method from [14], derive a
substitution rule acting on single letters for @ 7 1. We can, however, use the rules (40) and
(42) to generate the sequences for a even and odd, respectively, if each letter is replaced
by a finite word according to (41) or (43) in the final sequence. In the transfer-matrix
formalism, this means that we must consider basic matrices which are not of the simple
type (25), but instead consist of products of such matrices. Since it is not clear to us to
what extent the theorems from [8] can be extended to cover such a case, our analysis does
not allow us to draw any conclusions about the nature of the spectrum for these sequences.
We believe that this is a problem that deserves further investigation in the future.
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Appendix. Detailed derivation of a trace formula

To obtain the trace map in (31), we have to apply the relation in (29} several times and also
use the fact that the value of a trace is always invariant with respect to cyclic permutations
of the matrices. Explicitly this can be achieved as

Xpp = TH T (A)] = Te[T"(ACBACBE))
= Tr[T"(B)T"(ACB)T"(ACB)]
= Tr[T"(ACB)T"(ACB)T"(B)]
= Tr[T"(ACB)] Tt{T*(AC B)T"(B)] — Tr[T"(B)]
=TH[T"(ACB)] Ti[T*(BACB)] -~ Ti[T"(B)]
=Tr[T"(ACB)) Te[T"(BBAC)] — Tx(T"(B)]
= Tr[T"(ACB){TiT"(B)] Tt[T"(BAC)] ~ Tt[T*(AC)]}

— Te{T"(B)]

= ry(Yaln — Wn) = Yn.
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In the same way, all the other formulae in (31) can be found.
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